Skip to main content

🔎 xchg rax, rax

·1526 words·8 mins· loading · loading · · Draft
assembly low-level
mov al, 11
Table of Contents


So recently a coworker of mine showed a book about assembly poems, at first I was like “well this joke is very funny” and then I read the first page. 5 minutes later I ordered the same book for my own, and now that it has been received, I want to write my notes here.

There is an online and free version of the book.

I will try to understand each 64 pages of this awesome work, in order to maintain my assembly knowledge and to learn new tricks.

Of course I can be wrong in my interpretations of certain code or instructions, if so, feel free to help me improve!


1xor      eax,eax
2lea      rbx,[0]
3loop     $
4mov      rdx,0
5and      esi,0
6sub      edi,edi
7push     0
8pop      rbp

The first page is pretty straightforward. As you can see every line sets one register to 0.

Every instruction here is very common and easy to understand, but one thing caught my attention: loop $. So let’s dig a bit here.

loop <label> can be resumed like so:

2    ; if cx == 0 jmp to end
3    test cx, cx
4    jnz $+3
6    dec cx
7    jmp loop

As you can see, it decrements cx at each iteration until it is 0. So a loop $ would simply set cx to 0, as the label to loop through is $, the symbol for the actual address.

Normally with loop label you would have some code between label and the loop instruction, but here there is none, so the loop only decrements cx.

Pretty sneaky trick.


2    xadd     rax,rdx
3    loop     .loop

This one is a little trick and pretty obfuscated but was very quick to understand. In fact, this loop produces the fibonacci sequence for the first cx elements.

As we learnt about loop at 0x00, it loops until cx equals 0, and here there is one instruction which gets exectued within the loop.

xadd is quite uncommon, this instruction can be coded as:

2    ; swap rax and rdx
3    xchg rax, rdx
5    ; rdx = rdx + rax
6    mov r8, rdx
7    add r8, rax
8    mov rdx, r8

One experienced programmer can spot the algorithm to compute the fibonacci sequence here, which calculate the sum of the two previous elements of the sequence.


1neg      rax
2sbb      rax,rax
3neg      rax

This code was a bit tricky, after discussing with friends (xThaz & SoEaSy) we agreed to say that this code tells if rax is different than 0.

At first I said that it tells the sign of rax, but I missunderstood the sbb instruction, but I was wrong and overlooked the computing of the sbb rax, rax.

This code requires to look at neg at first, despite of switching the sign of the target, it also sets the carry flag CF accordingly with the sign.

We can now dig sbb, its code can be:

2    ; rax is argv[0]
3    ; rbx is argv[1]
4    mov r8, rax
5    add r8, CF
6    sub rbx, r8

By looking at the possible output values, we van see that it is a substraction by either rax + 0 or rax + 1 of rbx. Given that in this code, we have sbb rax, rax, we can sse that we will only get rax = rax - (rax + CF), with CF at 0 or 1, thus the output of the instruction is either 0 or 1, corresponding to the initial sign of rax.


1sub      rdx,rax
2sbb      rcx,rcx
3and      rcx,rdx
4add      rax,rcx

With the previous experiences we now know about all the above instructions, we can deduce the behaviour of the code, which can be coded in a more high-level language like Python:

1def my_func(rax, rdx):
2  if rax > rdx:
3    rax += rdx

Yes, this is that simple. The tricky part comes from the sbb and and part.

  • sub rdx, rax stores the difference in rdx, and sets the CF if needed.
  • sbb rcx, rcx sets rcx to neg CF (either 0 or 0xffffffff)
  • and rcx, rdx
    • If rax was lower than rdx at line 1: rcx would be 0 and then the and sill still set rcx to 0
    • If rax was greater than rdx at line 1: rcx would be 0xffffffff and so, rcx becomes the value of rdx
  • add rax, rcx is trivial now

So 0x03 adds rdx to rax if rax > rdx.


1xor      al,0x20

This code was pretty simple to test, I was unsure of the exact behaviour of it, so I tested it:

1for x in range(255):
2  print(chr(x), chr(x ^ 0x20))

And as you can see by executing this code, the printable characters have their case swapped: lowercase letters become upperccase, and vice-versa.


1sub      rax,5
2cmp      rax,4

This code is so tiny that it seems complex, but fear not, I think I have the solution for it. This code shows the similarities and difference beteween sub and cmp.

  • sub rax, 5 actually overwrites the value of rax
  • cmp rax, 4 computes sub rax, 4 and only stores the result in the flags, rax is not modified


1not      rax
2inc      rax
3neg      rax

This code teaches the trick for those instructions:

  • not rax does the two’s-complement for the value -> not 0x5 = 0xfffa
  • inc rax; neg rax does the same -> neg 0x6 = 0xfffa


1inc      rax
2neg      rax
3inc      rax
4neg      rax

This code shows us that the inc; neg is symetric: doing it twice leads us to the original value. Which is pretty logic as inc; neg is the same as neg.


1add      rax,rdx
2rcr      rax,1

rcr is not quite common, it rotates the bits to the right.

In fact, there is stuff hapenning with the CF but I will skip this part as it is too long.


1shr      rax,3
2adc      rax,0

shr is a right shift of bits, with storing into CF for overflowing last bit. This does the same as dividing by 2^n, with shr rax, n.

adc is add with the CF in addition:

1; rax is argv[1]
2; rbx is argv[2]
4  add rax, rbx
5  add rax, CF

So here the code divides rax by 8 (2^3) and if the 3rd bit was 1, it increases rax, we can rewrite this code in Python to make things clearer:

1def nine(a):
2  cf = a & 0b100
3  result = a / 3 
4  result += cf
5  return result


1    add      byte [rdi],1
3    inc      rdi
4    adc      byte [rdi],0
5    loop     .loop

Now it gets a bit interesting.

add byte [rdi], 1 increases the value of what is pointed by the address at rdi.

inc rdi adds 1 to rdi without modifing the CF.

adc byte [rdi], 0 writes the content of CF at the address pointed by rdi.

loop .loop -> dec cx; jmp short .loop.

My guess here is that it sets every bytes in memory (at the address pointed by rdi) to the content of CF. The size of the memory is rcx, and the first byte is set to 1 in order to identify the chunck (like a start bit in telecommunications).


1not      rdx
2neg      rax
3sbb      rdx,-1

Here I got stuck for at least one hour, and because we had already seen all instructions, I did not bothered re-reading the documentation. It is pointless to read something twice, right?

So after calling the joker “coworker help”, we saw that neg does not only the 2-complement of the register, but also sets CF to 1 if the register is not 0. Remember to always double check what you read, especially documentation.

So this code invert all bits of rdx, and if rax is not 0, it will decrement rdx by 1.


1mov      rcx,rax
2xor      rcx,rbx
3ror      rcx,0xd
5ror      rax,0xd
6ror      rbx,0xd
7xor      rax,rbx
9cmp      rax,rcx

Despite the number of lines, this code was very easy to understand, in fact I was even able to guess (CTF player strenght here) the behaviour of it within a few seconds.

The code acts in two steps, and demonstrates that a ror + xor is the same as a xor + ror.

The first 3 lines copies rax into rcx and xor rcx, rbx, and then does a ror rcx, 0xd. The other next 3 lines does the opposite: ror rax, 0xd (and also ror rbx, 0xd) and xor rax, rbx.

Finally we see that both rax and rcx have the same value. Proving that ror;xor is commutative.


 1mov      rdx,rbx
 3xor      rbx,rcx
 4and      rbx,rax
 6and      rdx,rax
 7and      rax,rcx
 8xor      rax,rdx
10cmp      rax,rbx

This does the same as 0x0c but for xor; and & and; xor. Nothing really outstanding.


1mov      rcx,rax
2and      rcx,rbx
3not      rcx
5not      rax
6not      rbx
7or       rax,rbx
9cmp      rax,rcx

Same goes for and; not & not; or.


2    xor      byte [rsi],al
3    lodsb
4    loop     .loop


🔎 Creating a VM for fun - Part 1: ASM
·451 words·3 mins· loading · loading
Custom VM assembly low-level reverse
🔎 Creating a VM for fun - Part 2: C
·1225 words·6 mins· loading · loading
Custom VM c low-level reverse
🏌️ Binary golfing - Introduction
·711 words·4 mins· loading · loading
Binary golfing binary elf golf low-level